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1. Background 
Since 2008 there have been many moderate size (i.e. 4<M<6) earthquakes occurred in 

Central and Eastern US (CEUS), a significant increase comparing to previous decades [Ellsworth, 
2013]. It is widely speculated that rapid growing of anthropogenic activities, especially extraction 
of fossil fuels and disposal of waste fluids, are the primary cause for such an increase in the 
CEUS. Earthquakes that related to anthropogenic activities are termed as induced earthquakes, 
which is different from naturally occurring earthquakes driven by tectonic forces. Many studies 
have investigated the connection between anthropogenic activities (i.e., hydraulic fracturing and 
disposal of waste waters) and moderate size earthquakes in CEUS by looking at the temporal 
and/or spatial relationship between them [e.g. Frohlich, 2012; Horton, 2012; Keranen et al., 2014; 
Weingarten et al., 2015; Walsh and Zoback, 2015]. Their results have shown that in most cases 
waste-waster disposal is the primary cause of such increases in moderate-size earthquakes in 
CEUS. In a few isolated regions hydraulic fracturing is also responsible for inducing moderate-
size earthquakes [Skoumal et al., 2015]. This is quite different in western Canada and southwest 
China, where recent studies have shown that hydraulic fracturing operation is the primary cause 
of moderate-size earthquakes in these regions [Atkinson et al., 2016; Bao and Eaton, 2016; Lei et 
al., 2017]. 

This conclusion also invokes questions on the physics underneath of the nucleation of 
induced earthquakes. In particular, do induced and tectonic earthquake sequences in CEUS share 
the same statistics, for example the Omori’s law [Utsu et al., 1995] and the Gutenberg-Richter’s 
law? A comprehensive comparison of the spatio-temporal evolution pattern and magnitude-
frequency distribution between induced and naturally occurring earthquake sequences may 
greatly improve our understanding on their potential differences. In particular, Llenos and 
Michael [2013] have shown that it is possible to detect background rate changes and aftershock 
productivity for sequences in Oklahoma and Arkansas by stochastic epidemic-type aftershock 
sequence models and statistical tests. However, due to sparse seismic station coverage, the 
earthquake catalogs in CEUS generally have a magnitude completeness of 2.5 to 3, which means 
that many smaller magnitude events are missing in the regional or national earthquake catalog. 

Recently many groups have utilized the so-called waveform matched filter technique to 
detect missing small earthquakes for earthquake sequences in Canada [Bao and Eaton, 2016], 
Illinois [Yang et al., 2009], Ohio [Skoumal et al., 2015] and in Texas, Oklahoma and Colorado 
[van Der Elst et al., 2013; Chen et al., 2017]. These studies showed that it is possible to identify a 
few to a few ten times more events that listed in existing catalog. These newly detected events 
can be used to improve our understanding of the spatio-temporal evolution of each sequence, as 
well as its relationship with injection parameters. 

In the following sections we briefly describe what we have done in the past two years by 
applying the matched filter method to earthquake sequences in CEUS, including both natural 
events (i.e., 2011 M5.8 Virginia and the 2014 M4.1 South Carolina earthquakes) and possible 
induced events in Oklahoma and nearby states. 
 
2. Systematic Detections of Microseismicity Following the 2014 M4.1 South Carolina 
Earthquake [Daniels et al., in prep] 

The border between Georgia and South Carolina does not have a high level of seismicity, so 
the magnitude 4.1 earthquake on February 15, 2014 near Edgefield, SC provides an opportunity 
to study the distribution of events in this region (Figure 1). The ANSS catalog also records a 
magnitude 3.0 aftershock, but no other events in are recorded in this sequence. The Savannah 
river area, which is along the border between Georgia and South Carolina, does not have a high 
level of seismicity, so this sequence provides an great opportunity to study seismotectonics in this 
region, and offer a nice comparison with potential induced seismicity in other places. 

A waveform matching technique is used to search for missing events between 8 and 22 
February 2014. Stations within 100 kilometers of the mainshock are studied, and 9 of these 15 
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stations with the clearest event arrivals are used 
as part of the final dataset for stacking cross-
correlation waveforms. The two ANSS events—
the mainshock and recorded aftershock—are 
used as templates to scan the continuous data 
for events with similar waveforms. We first 
filter the data between 2-16 Hz to continuous 
waveform data between 8th and 22nd of February 
2014. We manually pick the P and S arrivals at 
stations that recorded both template events.  

Signal-to-noise (SNR) ratios are computed 
for each template waveform. The signal window 
chosen is 1 second before to 5 seconds after the 
P and S wave arrival. The noise window is 7 
seconds before to 1 second after the P and S 
wave arrival. Signals with SNR less than 5 are 
not used in computing cross-correlation (CC) 
waveforms. Templates with less than 12 
channels with an SNR greater than 5 are not 
used either. The time step—or offset—for 
computing a CC is set as 0.025 s, and the time 
window is set to 1 second before to 5 seconds 
after the arrival time. Of the stations situated 
within 100 kilometers of the mainshock, nine 
with the clearest event arrivals are compiled for 
stacking cross-correlation waveforms. 
Individual CC waveforms for each day are 
stacked, resulting in one cross-correlation 
waveform for each continuous day. The initial 
detection threshold value is equal to the median 
plus nine times the median absolute deviation of 
the signal.  

To avoid over-counting events, duplicate 
detections are removed. If there are multiple 
detections within two seconds of one another, 
only the detection with the highest cc value is 
kept. The remaining events are listed as 
detections. To obtain an approximation of the 
magnitude of the detected events, the peak 
amplitude ratio between waveforms 
corresponding to the same station is calculated. 
Figure 2 shows an example of a newly detected 
magnitude 0.68 event occurred about 11.3 min 
(682 s) before the mainshock. The mean CC 
value is 0.311, well above the detection 
threshold. 

As relatively few events are detected with 
the first two templates, the detections are used 
in turn as new templates. The same matched 
filter method is used with the new templates. 

Fig. 1. A map of the study region near the border of 
South Carolina and Georgia. The two beach balls 
mark the M4.1 mainshock and the M3.0 aftershock. 
The inset mark the study region in a larger map of 
CEUS. 

Fig. 2. Example of a detected foreshock (gray) using 
the magnitude 4.1 mainshock waveform as template 
(red). 
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Between the first and new set of detections, if any 
events occur within a two second window, the 
event with the larger cross-correlation value is used 
in the final detection set. Upon stacking cross-
correlation waveforms corresponding to the final 
dataset and running final detections, there are 6 
events found using the first two templates—the 
two ANSS events excluded—as well as 13 events 
found using the detections as templates, for a total 
of 19 detections (Figure 3). As shown in Figure 3a, 
seven of the eight foreshocks are considered as 
detections only if the threshold is equal to between 
9 and 12 times the MAD added to the median. This 
suggests that, were a higher threshold to be chosen, 
that most of the potential foreshocks would not be 
considered detections. Compared to the waveforms 

of the Mw 0.68 foreshock in Figure 2, it is 
debatable as to whether several of the other 
foreshock waveforms contain true events. 

Using the 9 times MAD threshold, there are 
also 11 aftershock detections, not including the mainshock and Mw 3.0 event. 4 of these events 
are aftershocks of the Mw 3.0 event, but most of the aftershocks occur on the same day as the 
mainshock. As shown Figure 3a, several of the aftershocks are detected with the highest threshold 
of 15 times the MAD, which suggests many can be identified as events with a high amount of 
confidence. Two of the aftershocks of the Mw 3.0 event have two of the highest cross-correlation 
coefficients among all detections despite their low magnitudes, which is further evidence that 
these may be true events.  

Overall there are not many detected aftershocks for this event. As Figure 9 demonstrates, the 
detected number of events falls short of the expected number of events, according to the Båth and 
Gutenberg-Richter Law [Shcherbakov et al., 2005]. In total there are only 20 detected events—
excluding the mainshock—whereas theoretically, upwards of 1000 events would be expected. It 
is still not clear why this sequence has so few aftershocks as compared with the general statistics. 
 
3. On-fault and Off-fault Aftershock Triggering Following the 2011 Mw5.7 Virginia 
Earthquake [Meng et al., submitted] 

3.1 Introduction 
At 17:51:05 08/23/2011, an Mw 5.7 

earthquake struck Louisa County, Virginia 
(Figure 4). The mainshock ruptured a shallow, 
reverse fault striking N29oE and dipping 
S51oE in the central Virginia seismic zone 
(CVSZ) [Chapman, 2013]. When the Virginia 
mainshock occurred, only one permanent 
broadband seismic station (US.CBN) and a 
few stations from the Virginia Tech 
Seismological Observatory (VTSO) were 
operating within 100 km (Figure 4). To 
capture the aftershock sequence, 27 temporary 
seismic stations from 4 different networks 
were deployed around the epicenter between 

Fig. 3. (a) Magnitude versus time of the newly 
detected events color-coded by the mean CC 
values. (b) Frequency-magnitude distribution of 
this sequence. 
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~1.5 and 6 days following the mainshock [Chapman, 2013; McNamara et al., 2014]. Because of 
the prompt and dense installation of seismic instruments, the detailed characteristics of this 
aftershock sequence have been well studied. In particular, 80 early aftershocks (up to 09/02/2011) 
are identified and located, using one temporary seismic network [Chapman, 2013]. Moreover, 
380 aftershocks are identified and located using four temporary networks from 08/25/2011 to 
05/02/2012 by McNamara et al. [2014]. Most aftershocks delineated a fault plane that was 
consistent with the focal mechanism of the mainshock (Box A in Figure 4). In addition, some 
aftershocks were northeast to the mainshock’s rupture plane and shallower than 5 km (Box B in 
Figure 4), which were clearly not on the mainshock’s rupture plane. Wu et al. [2015] performed 
aftershock detection using all temporary stations using a combined method of STA/LTA and 
cross-correlation. Then, they hand-picked arrival times for the detected aftershocks and relocated 
1666 events using hypoDD [Waldhauser and Ellsworth, 2000]. They also obtained focal 
mechanism solutions for 393 aftershocks, which were dominated by reverse faulting. 

The 2011 Virginia earthquake sequence and subsequent dense instrumentation provide us a 
rare opportunity to investigate in details how microseismicity and stress state evolves before and 
after a moderate-size intraplate earthquake. Studies on earthquake triggering require a high-
quality earthquake catalog, which can be obtained via waveform-based matched filter technique 
[e.g., Peng and Zhao, 2009; Yang et al., 2009; Meng and Peng, 2014]. In this study, we first apply 
this method to obtain a much more complete catalog around the origin time of the 2011 Virginia 
earthquake. Then, taking advantage of the massive amount of cross-correlations done during 
detection, we perform magnitude calibration and hypoDD relocations for the detected aftershocks 
[e.g., Shelly et al., 2016]. Finally, based on the enhanced catalogs, we analyze both 
foreshock/aftershock activities, detailed spatial variations of Gutenburg-Richter relationship, 
aftershock migration and triggering relationship with the Virginia mainshock and hurricane Irene.  
 
3.2. Data and Method 

 We perform matched filter detections between 08/25/2011 00:00:00 and 12/01/2011 
00:00:00 using all permanent and temporary stations (Figure 4). The procedure generally follows 
that of Meng and Peng [2014] and is briefly described below. We use the 380 aftershocks from 
McNamara et al. [2014] as templates. The arrival times are predicted with a three-layer local 
velocity model [Chapman, 2013] and software COMPLOC [Lin and Shearer, 2006]. We use 
signal windows 1s before to 4s after both P- and S-waves on the vertical and horizontal channels 

to cross-correlate with the continuous data. 
Then, all correlation traces from one 
template are stacked to obtain the mean 
correlation trace. An event is detected when 
the mean correlation-coefficient (CC) 
exceeds the sum of the median value and 9 
times the median absolute deviation (MAD) 
of the mean correlation trace. We then 
remove all ‘duplicate detections’ if their 
detecting time windows overlap [Meng et 
al., 2013a].  

Following the detection, we calibrate the 
relative moment magnitudes of all 
earthquakes by accurately measuring 
amplitude ratios between each pair of 
earthquakes [Cleveland and Ammon, 2015; 
Shelly et al., 2016]. In addition, as cross-
correlation between all pairs of earthquakes 
are already done, we can conveniently 
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extract the correlation-derived differential travel 
times, following the procedure in Shelly et al. 
[2016]. The differential travel times are then used 
to precisely relocate all earthquakes in the 
software hypoDD [Waldhauser and Ellsworth, 
2000].  
 
3.3. Aftershock Detection of aftershocks with 
Temporary Stations 
      After matched filter detection, magnitude 
calibration and hypoDD relocation, we obtain 
1859 well-constrained earthquakes between 
08/25/2011 and 11/30/2011 (hereafter referred as 
the detected catalog) (Figure 5). Because of the 
dense temporary networks, we are able to recover 
aftershocks as small as magnitude −0.5. For 
seismicity in Box A, the magnitude of 
completeness (Mc) and b-value are 0.45 and 0.83, 
respectively, which are obtained by the best-
combined method in the software ZMAP 

[Wiemer, 2001] (Figure 5a). For Box B, the Mc and b-value are 0.37 and 1.00, respectively 
(Figure 5c).  

The hypoDD relocated seismicity generally shows a similar pattern to that from McNamara et 
al. [2014] and Wu et al. [2015] (Figure 6). In Box A, majority of aftershocks depict a fault plane 
that strikes N34°E and dips 52° SE, which is consistent with the focal mechanism solution of the 
mainshock [Herrmann, 2011]. A cluster of shallow earthquakes was located northwest to the 
mainshock’s rupture planes, which are termed as Northwest Fault (NF) by Horton et al. [2015]. 
Horton et al. [2015] suggested that aftershocks in Box B can be further divided into two clusters: 
1) a tight, shallow cluster of aftershocks (i.e., Fault Northeast of Cuckoo or FNC); 2) a cluster of 
aftershocks striking NE and dipping vertical (i.e., Fredericks Hall Fault or FHF) (Figure 4). 
However, our relocation results show that both clusters can be best characterized by fault planes 

striking NW and dipping NE (Figure 6), 
consistent with the pattern obtained by Wu et 
al. [2015]. Moreover, focal mechanisms from 
these two clusters agree with a NNW striking 
fault plane [Wu et al., 2015]. 
 
 3.4. Statistical Behavior of Detected 
Aftershock Sequences 

Next we examine statistical behaviors of 
newly detected aftershock sequences. In Box 
A, aftershocks above the Mc showed a typical 
Omori decay [Utsu et al., 1995] (Figure 6a 
and 6b). We fit the seismicity rate changes in 
Box A with the modified Omori’s law using 
the software Aftpoi [Ogata, 2006]. The best-
fitting p-value is 1.15, which is close to that 
of a typical aftershock sequence (i.e., p=1). 
Although the seismicity in Box B gradually 
decayed with time (Figure 7c and 7d), the 
rate changes can not be fitted with the 
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modified Omori’s law, mainly because of two time 
periods with elevated seismicity rate (Figure 7d). A 
close examination reveals that the sudden increase 
in seismicity during the two time periods can be 
considered as earthquake swarms occurred along 
the FHF, which refer to sequences with the largest-
magnitude event not at the beginning of a sequence 
and similar magnitudes for all events [Mogi, 1962].  
As shown in Figure 5, the overall b-values in 
Boxes A and B are quite different. To further 
quantify this, we obtain a b-value map by 
computing the b-value at each hypocenter with the 
nearest 100 events using the best combination 
method in ZMAP (Figure 8). As expected, the b-
value map shows significant spatial variability 
across the study region. The majority areas in Box 
A have typical b-values for intraplate seismicity 
(i.e., ~0.8). We also observe a trend of decreasing 
b-values from ~1.4 at the southwestern end (cross-
section B’) to ~0.7 at the northeastern end (cross-

section B) of the mainshock’s rupture plane. In Box B, most b-value measurements are larger 
than 1.0. 

It is commonly proposed that b-value from the Gutenberg-Richter magnitude-frequency 
relationship increases with decreasing differential stress level [Scholz, 1968]. Schorlemmer et al. 
[2005] found that thrust faulting events, which are under higher stress regime, tend to have lower 
b-values than normal faulting events, which are under lower stress regime. Moreover, there was 
clear correlation between low b-values obtained from earthquakes prior to the 2011 Tohoku-Oki 
earthquake and area with high slip during the mainshock, as well as b-values increment after the 
mainshock and high slip [Tormann et al., 2015]. For intraplate seismicity, the typical b-value is 
around 0.8, lower than the global average of 1.0. The low b-value could be an indication that 
intraplate faults are critically stressed due to long recurrence time. Here we found that the b-
values are ~0.83 and 1 in Boxes A and B, respectively. However, the b-value map (Figure 8) also 
showed clear spatial variations. It is interesting to note that the high b-values seismicity at the 
southwestern end located close to areas with little slip (i.e., low stress level) [Hartzell et al., 2013] 
and the low b-values seismicity at the northeastern end overlapped with a major slip patch (i.e., 
high stress level). The overall higher b-values in Box B indicate relatively low differential stress 
level, which is consistent with their shallow depths and the occurrences of two swarms possibly 
related to high fluid pressures. Moreover, b-values may correlate with material heterogeneity 
[Mogi, 1962]. Areas with high material heterogeneity are less likely to host large earthquakes 
because the cracks are small and oriented in all directions, therefore have high b-values. In 
summary, the great spatial variability of the b-values within the Virginia aftershock zone suggests 
that not all intraplate faults/areas have low b-values. Instead, it is possible to have very weak or 
highly fractured area within the overall strong intraplate crust. 
  
3.5 Aftershock Triggering Mechanisms 

Although earthquakes triggered at remote distances can be only attributed to dynamic 
stresses, the mechanisms for near-field aftershock triggering (i.e., within one or two rupture 
lengths) is still elusive [e.g., Felzer and Brodsky, 2006; Richards-Dinger et al., 2010]. Different 
earthquake triggering mechanisms, including dynamic triggering, static triggering and quasi-static 
triggering [Freed, 2005], have successfully explained the spatial pattern and/or temporal 
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evolution of seismicity following certain mainshocks. Below we explore possible mechanisms 
responsible for triggering aftershocks following the Virginia mainshock. 

 
3.5.1 Dynamic triggering 

Dynamic stresses carried by seismic waves can trigger earthquakes from immediate vicinity 
to remote distances (i.e., beyond several rupture lengths) [e.g., Hill et al., 1993]. Most reported 
cases of dynamic triggering are at far-field, because the triggered earthquakes are easier to be 
identified during the long-duration and low-frequency surface waves. At near field, dynamic 
triggering is much more difficult to observe, because the wave train is short and the frequency 
contents of mainshocks’ coda waves and triggered earthquakes are very similar. In this study, 
although only a few regional seismic stations recorded the Virginia mainshock, it is evident that 
almost all strong local signals immediately after the mainshock are identified by the matched 
filter detection. In Box A, 6 aftershocks are detected during the mainshock’s coda waves (i.e., < 
2000s). Later on, aftershocks in Box A located exclusively NE to the mainshock’s epicenter 
(Figure 6), which is consistent with the rupture directivity (i.e., SW to NE). Such asymmetric 
aftershock distribution has been used as evidence for near-field dynamic triggering due to the 
focusing of dynamic stresses [e.g., Kilb et al., 2002; Gomberg et al., 2003]. However, in Box B 
only 1 and 8 earthquakes occurred within 2000s and 1.5 days after the mainshock, respectively. 

Also, the seismicity on the FNC and FHF does 
not lie on the path of rupture directivity. 
Therefore, dynamic triggering may best explain 
the asymmetric aftershock distribution in Box 
A, while the activation of seismicity in Box B 
does not support the mechanism of dynamic 
triggering. 

 
3.5.2 Static triggering 

Static Coulomb stress changes caused by 
fault displacement are smaller but permanent, 
comparing to dynamic stress changes. Static 
triggering could not explain triggering beyond 
several fault lengths, as static Coulomb stress 
changes decay very fast with distance [Freed, 
2005]. Following the Virginia mainshock, 
multiple slip models have been obtained. A 
preliminary slip model was calculated using 
teleseismic P- and S-waves and the finite fault 
inverse algorithm [Shao and Ji, 2011] (hereafter 
referred as the CJ model). However, the CJ 
model is based on the initial hypocenter 
reported by United States Geological Survey 
(USGS) and well separated from the relocated 
aftershocks (Figure 10a). Similar to Walsh et 
al. [2015], we shift the CJ model to the 
relocated hypocenter obtained by Chapman 
[2013] and refer it as the CJ2 model (Figure 
10b). Chapman [2013] proposed a source 
model based on the location and moment 
release of three subevents, which is referred as 
the MC model (Figure 10c). Hartzell et al. 
[2013] also calculated a finite slip model (the 
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SH model) using teleseismic P-waves and theoretical Green’s functions (Figure 10d).  
Walsh et al. [2015] calculated static stress Coulomb changes on the fault planes delineated by 

aftershocks and known regional fault geometry using the CJ2 model. They concluded that 
aftershocks along the NF were triggered by the mainshock, while aftershocks at the FNC and 
FHF were unlikely triggered due to very small Coulomb stress changes. Wu et al. [2015] also 
conducted static triggering analysis using the MC model and 393 focal mechanism solutions in 
both boxes. The majority of events had positive Coulomb stress changes no matter which nodal 
plane was selected. Due to the large variations of fault dimension and slip distribution among four 
slip models, we compute static Coulomb stress changes using all available slip models to evaluate 
the model dependency. 

It is difficult to obtain accurate static Coulomb stress changes along mainshock’s rupture 
plane, because the heterogeneous slip along the rupture plane is usually unresolvable. Therefore, 
we only focus on static Coulomb stress changes in Box B, where the Coulomb stress changes are 
less sensitive to the resolution of slip model. 30 focal mechanism obtained by Wu et al. [2015] 
showed significant variations in strike, dip and rake (Figure 10). Therefore, assuming a single 
geometry for receiver faults is not appropriate for static Coulomb stress calculation. Instead, we 
resolve static Coulomb stress changes on both nodal planes of the 30 focal mechanisms. The 
results using the CJ and CJ2 models show similar pattern, with ~40-60% of focal mechanisms 
having positive static Coulomb stress changes on at least one nodal planes. For the MC and SH 
models, at least 60% of events in Box B are brought closer to failure no matter which nodal plane 
is used. Although less than half of focal mechanisms have positive Coulomb stress changes using 
the CJ and CJ2 model, the net seismicity rate may still increase significantly, because seismicity 
rate decrease is bounded by 0, while seismicity rate increase is unbounded [Toda et al., 2012]. 
Regardless of slip models, our results suggest that static Coulomb stress changes could explain 
aftershock triggering in Box B.  

 
3.5.3 Afterslip 

Afterslip following large earthquakes can be identified by geodetic measurements. However, 
because of the lack of geodetic instruments around 
the epicenter of the Virginia mainshock, afterslip 
could have occurred but was not observed 
geodetically [Roeloffs et al., 2015]. Therefore, we 
investigate whether the migration of earthquakes 
and/or repeaters occurred following the 
mainshock, which is often considered as 
manifestation of aseismic creep or afterslip [e.g., 
Tajima and Kanamori, 1985; Henry and Das, 
2001; Peng and Zhao, 2009; Kato et al., 2012; Yao 
et al., 2017; Wu et al., 2017]. Repeaters are a set 
of events that rupture the same fault patches and 
produce highly similar waveforms at recording 
stations, while the rest fault areas overtake 
aseismic creep [e.g., Nadeau et al., 1995; Peng et 
al., 2005; Zhao and Peng, 2009].  

Because the number of detected earthquakes 
by regional seismic stations is very small, we 
investigate the aftershock migration with the 
detected catalog starting ~1.5 days after the 
mainshock. First, we identify repeaters by looking 
for event pair with CC>0.9. When the number of 
events linked by high waveform similarity 
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reaches 3, a repeater family is formed. 6 and 7 repeater families are identified in Box A and B, 
respectively (Figure 11). All repeater families started within a few days following the mainshock, 
except for two families in Box B (Figure 11c). There was no systematic migration pattern for the 
activation of repeater families (Figure 11a and b). Then, we examine the spatial-temporal 
evolution of all seismicity along AA’, BB’ and depth (Figure 11). In both Boxes, we find that the 
aftershock zone did not expand with time along either strike or dip. However, we note that we did 
not have the complete aftershock sequence within ~1.5 days after the mainshock, during which 
aftershock expansion would be most significant if driven by afterslip [Peng and Zhao, 2009; 
Lengline et al., 2012]. Therefore, along with the absence of geodetic measurements, we also did 
not have sufficient evidence that afterslip did drive aftershocks on the mainshock rupture plane.  
 
3.5.4 Hurricane Irene 

In critically stressed tectonic settings, seismic events can be prompted or inhibited by extreme 
weather events (e.g., rainfall, hurricane or typhoon). For example, Hainzl et al. [2013] found that 
pore-fluid pressure diffusion in subsurface due to rainfall induced seismicity rate increase at Mt. 
Hochstaufen, Germany. Seismicity modified by atmospheric pressure changes has also been 
studied, but in a much less extent. Gao et al. [2000] illustrated an annual modulation of the 
triggered earthquake rate in California following the 1992 Mw 7.3 Landers earthquake by 
atmosphere pressure changes, which reduce the normal stress along faults and enhance seismicity. 

Liu et al., [2009] suggested that some shallow 
slow-slip events were triggered along the 
Longtitudial Valley Fault in eastern Taiwan 
following several wet typhoons. However, a 
more recent study examining the same data set 
showed that much of the transient signals 
observed by borehole stain meters were 
associated with rain falls, rather than aseismic 
slip at shallow depth [Hsu et al., 2015]. 

A few days following the Virginia 
mainshock, hurricane Irene raked the east coast 
of United States. Between Irene’s two landfalls 
at Cape Lookout, North Carolina, and Brigantine 
Island, New Jersey, it passed through the 
aftershock zone of the Virginia mainshock with 
powerful swirls of wind [Avila and Cangialosi, 
2011]. The meteorological data (e.g. 
precipitation, temperature and atmospheric 

pressure) is recorded by a National Oceanic and 
Atmospheric Administration (NOAA) station 
03715/LKU, ~5 km from the mainshock’s 
epicenter. We do not observe any significant 
changes in precipitation and temperature 
associated with hurricane Irene. However there 
was a clear atmospheric pressure drop between 
~3 and ~5 days after the mainshock, which is 
caused by the pass-by of Irene (Figure 12). The 
onset of the first swarm in Box B coincided with 
the onset of the atmospheric pressure drop 
(Figure 12a). Because the dominant faulting 
types in Box B are reverse [Wu et al., 2015], the 
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seismicity rate increase during hurricane Irene can be qualitatively explained by fault unclamping 
due to atmospheric pressure drop, similar to how fluid extraction might change gravitational 
loading and induce earthquakes [Ellsworth, 2013]. Because the absolute atmospheric pressure 
change is very small (i.e., < 1 kPa) at the onset of seismicity rate increase, we suspect that the 
stressing rate, instead of stress, is likely the controlling factor on triggering earthquakes in this 
case. This is consistent with a better correlation between the derivative of atmospheric pressure (a 
proxy for stressing rate) and seismicity rate (Figure 12c). In the rate- and state-dependent friction 
model for earthquake triggering, stress steps cause aftershock-like sequences, while stress rate 
changes cause earthquake swarms [Dieterich, 1994; Toda et al., 2002], which may be an 
alternative explanation of the occurrence of the first swarm in Box B. 

 
3.6. Conclusion 

We performed single-station matched filter detection within 10 days before the 2011 Virginia 
earthquake and found no foreshock activity. We also detected 1859 aftershocks from 08/25/2011 
to 12/01/2011 using 27 temporary stations and then perform magnitude calibration and hypoDD 
relocation for all events. On-fault aftershocks (i.e., within Box A) showed typical Omori’s decay, 
while off-fault aftershock sequence (i.e., within Box B) included two earthquake swarms. The b-
value map illustrates an overall lower b-value in Box A than that in Box B. The significant spatial 
variability of b-values suggests that weak or highly fractured areas may exist within an overall 
strong intraplate crust. Finally, we conducted comprehensive studies on aftershock triggering 
following the Virginia mainshock, including afterslip, dynamic triggering, static triggering and 
hurricane pass-by. No single triggering mechanism is able to explain all features in aftershock 
activities. The asymmetric aftershock distribution in Box A can be best explained by focusing of 
radiated dynamic stresses. The static Coulomb stress changes better explain the triggering in Box 
B than dynamic stresses. Moreover, the first earthquake swarm in Box B may be related to the 
atmospheric pressure drop due to pass-by of hurricane Irene. The results suggest that it is possible 
to have multiple triggering mechanisms contribute to aftershock triggering, which has also been 
reported by a few previous studies [Daniel et al., 2008; Meng and Peng, 2014]. 
 
4. Comparisons of Statistical Parameters Between Induced and Tectonic Earthquake 
Sequences ]Meng and Peng, in prep] 
4.1 Dataset and Method 

We select earthquake sequences in CEUS to investigate their statistical characteristics. Our 
selection criterion includes that 1) the magnitude of mainshock above 3.0; 2) good station 

coverage around the earthquake sequence; 3) 
existence of local earthquake catalogs around 
the origin time of mainshock. The three 
criterions ensure that a complete earthquake 
sequence can be obtained by the matched 
filter detection. As a result, 10 earthquake 
sequences are selected for further analysis 
(Figure 13 and Table 1). 5 out of 10 
earthquake sequences are likely induced by 
industrial activities [Frohlich, 2012; van der 
Elst et al., 2013]. For the 2008 Illinois M5.2 
and 2011 Colorado M5.0 sequences, the 
detection has already been done by Yang et 
al. [2009] and van der Elst et al. [2013], 
respectively, thus we simply use the detected 
catalogs from the previous studies. For the 
remaining 8 sequences, we perform the 
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matched filter detection of earthquakes within 7 days after the mainshocks, following the 
procedure of Meng and Peng [2016]. The templates and seismic stations distribution for the 7 
sequences are shown in Figure 14. In summary, we use waveforms around the P- or S-wave of a 
template and cross-correlate with continuous data on all channels. Except for the templates in 
Oklahoma, the P- and S-wave arrivals for templates in other regions are manually picked. The 
correlation traces are then stacked to obtain a mean correlation trace. Correlation coefficients 
above a certain threshold indicate positive detections. The magnitude of the detected event is 
inferred as the sum of the template’s magnitude and logarithmic peak amplitude ratio between the 
detected event and template. 
 

Table 1. List of 10 earthquake sequences 
Event Mag Type Templates 

2008 Illinois 5.2 Tectonic Done by [Yang et 
al., 2009] 

2011 Colorado 5.0 Induced Done by [van der 
Elst et al., 2013] 

2011 Texas 3.0 Induced 67� 
2011 Virginia 5.7 Tectonic 380✕ 

2012 New Madrid 3.9 Tectonic 1183*  
2013 New Madrid 3.7 Tectonic 1183*  
2014 S. Carolina 4.1 Tectonic 13*  
2014 Oklahoma 4.5 Induced 5379*  
2014 Oklahoma 4.3 Induced 5379*  
2014 Oklahoma 4.2 Induced 5379*  

 ��from Frohlich [2012];  
✕ from McNamara et al. [2014]; 
* from the ANSS catalog. 

 
4.2 Results 

The Frequency-Magnitude (F-M) distributions of the 10 earthquake sequences are shown 
in Figure 15. We fit the F-M distribution of each sequence by the Gutenberg-Richter relationship: 

log!" N = a − bM   (M > Mc) 
using the maximum curvature method in software ZMAP [Wiemer, 2001]. N is the total number 
of earthquakes above M, and Mc is the completeness of magnitude. For the Mc estimation, a 0.2 

correction is added. The 
a-value indicates the total 
seismicity production of 
the sequence, which 
usually correlates with 
magnitude of the 
mainshock. The b-value 
describes the relative 
abundance of larger 
events to smaller ones, 
which may be negatively 
correlated with 
differential stress level 
[e.g., Scholz, 1968].  
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Moreover, we compute the 
smoothed seismicity rate following 
the mainshock of each sequence 
with a moving window of 5 events 
[Ziv et al., 2003] (Figure 16). For 
the 4 sequences with small 
mainshocks (i.e., the 2011 Texas 
M3.0, 2012 New Madrid M3.9, 
2013 New Madrid M3.7 and 2014 S. 
Carolina M4.1), the numbers of 
events are too small to compute the 
smoothed rate. Next, we fit the 
remaining 6 earthquake sequences 
by the modified Omori’s law [Utsu 
et al., 1995]: 

n t = K
(t + c)! 

using software AFTPOI [Ogata, 
2006]. n(t) is aftershock rate and t is 
time since the mainshock. The K-
value is the productivity of the 
mainshock. The p-value describes 
the decay rate of seismicity.  

Comparing the a- and b-values 
of the 10 earthquake sequences 
(Figure 17a), it appears that the 
tectonic sequences tend to have 
lower a- and b-values than the 
induced ones. The tectonic 
sequences, except the 2011 Virginia 
sequence, have low b-values, which 
are typical for intraplate 
earthquakes. Because of the small 
number of events within the 2012, 
2013 New Madrid and 2014 S. 
Carolina sequences, the b-value 
measurements have much larger 
errors than other sequences. The 
relative high b-value for the 2011 
Virginia sequence may be caused by 
an off-fault earthquake swarm 

[Meng et al., 2017]. The induced 
sequences, except the 2011 Texas 
sequence, have b-values above 0.65. 

In particular, the three Oklahoma sequences have b-values higher than 0.8. The high b-values for 
the induced sequences suggest lower differential stress level along fault planes, which are 
consistent with the fluid-rich rock formation due to disposal of wastewater. The higher b-values 
may also indicate swarm-like sequence, which may be driven by fluid migration. Similarly, we 
also observe higher a-values for most induced sequences, even though they do not have the 
largest magnitudes. The abnormally large number of events during the induced sequences 
resembles earthquake swarms, that is, numerous events occur without a large mainshock.  
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However, we do not find systematic 
differences in K- and p-values between the 
induced and tectonic sequences (Figure 17b). 
In contrast, Llenos and Michael [2013] 
suggested that induced sequences in 
Oklahoma and Arkansas may have larger K-
values. The only point worthy mentioning is 
that the Oklahoma sequences tend to have 
low p-values, which indicates slower 
relaxation process than typical tectonic 
earthquake sequence. 

In summary, we find that induced 
earthquake sequences tend to have larger a- 
and b-values than tectonic ones. However, we 
also observe significant variations for all 
parameters among the targeted earthquake 
sequences. For example, the 2011 Texas 
sequence, an induced sequence, has the 
lowest a- and b-value. Many factors may 
contribute to such significant variations. First 
of all, although the CEUS is treated as a 
single region in this study, stress state and 
material properties may vary significantly 

within CEUS, which affects many parameters. For example, Meng et al. [2017] showed that b-
values vary spatially within the 2011 Virginia aftershock zone. Second, different mechanisms 
may be responsible for the occurrence of induced earthquake sequences [Ellsworth, 2013]. If the 
induced sequence is driven by fluid migration, it may behave more like a swarm. If the induced 
sequence is triggered by shear and normal stress changes from fluid injection/extraction, it may 
act as a typical aftershock sequence. Finally, some statistical parameters of earthquake sequence 
may be heavily affected by the magnitude of mainshock (e.g., a-value). The dependence of p-
value on the trigger size is still under debate as well [Ouillon and Sornette, 2005; Hainzl and 
Marsan, 2008]. 
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